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Abstract

Inferring 3D scene information from 2D observations is an open problem in com-
puter vision. We propose using a deep-learning based energy minimization
framework to learn a consistency measure between 2D observations and a proposed
world model, and demonstrate that this framework can be trained end-to-end to pro-
duce consistent and realistic inferences. We evaluate the framework on human pose
estimation and voxel-based object reconstruction benchmarks and show competitive
results can be achieved with relatively shallow networks with drastically fewer
learned parameters and floating point operations than conventional deep-learning
approaches.

Energy Prediction Networks [1]
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An unrolled optimization layer is defined by some learnable energy function E and update step f and maps observed features x
and an initial prediction ỹ(0) to a sequence of refined predictions ỹ(t).

Human Pose Lifting

• Initial estimate ỹ(0) based on a simple MLP [2].
•Ex and Ey are both shallow MLPs with relatively few parameters.
•Pairwise-distance preprocessing enforces invariance to rotation and translation.
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Joint error vs. computational efficiency. Size
proportional to number of trainable parameters.
Low, left and small are good.

+∼ 100× fewer parameters than baseline MLP model
+Accuracy can be traded off for computation in the same model
+Error within 10% in 4 steps (∼ 10× fewer ops), comparable at 16 (∼ 3× fewer)
+2D/3D annotations need not be consistent
+Same model can be retrofitted for different camera intrinsics
−Requires known camera intrinsics
− Inherently iterative – potentially slower on accelerators like GPUs.

3D Single View Reconstruction

Blocks of 3 (left-to-right): input image, 1283 CEα Modelnet inference, 2563 λIoU Inception-V4 inference.

car plane table
Resolution 32 64 128 256 32 64 128 256 32 64 128 256
OGN1 [3] 64.1 77.1 78.2 76.6 - - - - - - - -
MAT1 [4] 68.3 78.4 79.4 79.6 36.7 48.8 58.0 59.6 38.6 42.3 43.5 41.3
IGE-MN13 57.8 68.8 72.8 73.3 29.6 44.8 52.9 54.4 33.6 44.0 47.8 48.2
IGE-I413 57.9 70.9 74.0 75.2 30.5 47.8 57.5 57.3 34.8 46.5 52.7 50.5
IGE-MN1 57.0 70.3 76.2 75.2 30.7 47.9 58.7 58.1 33.6 45.9 50.6 50.2
IGE-I41 58.4 71.2 76.5 76.5 30.1 49.2 60.5 62.0 35.0 46.4 52.2 52.1

Mean IoU (in %) trained at different resolutions and evaluated at 2563.
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